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We provide explicit and unified formulas for the cocycles of all degrees on the
normalized bar resolutions of finite abelian groups. This is achieved by constructing
a chain map from the normalized bar resolution to a Koszul-like resolution for any
given finite abelian group. With a help of the obtained cocycle formulas, we
determine all the braided linear Gr-categories and compute the Dijkgraaf~Witten
Invariants of the n-torus for all n.

Keywords: group cocycle; Gr-category; DW invariant

2010 Mathematics subject classification: Primary: 20J06; 18D10; 57R56

1. Introduction

Throughout, let k be an algebraically closed field of characteristic zero and let k*
denote the multiplicative group k — {0}. Unless otherwise specified, all algebraic
structures and linear operations are over k. Our main aim is to provide explicit
and unified formulas for the cocycles on the normalized bar resolutions (normalized
cocycles) of finite abelian groups. Some applications to braided linear Gr-categories
and Dijkgraaf-Witten Invariants (DW invariant) are also considered.

The cohomology groups of finite abelian groups are computable thanks to the well
known Lyndon-Hochschild-Serre spectral sequence [15,23]. However, the explicit
formulas of normalized cocycles are not clear in literatures. Such explicit formu-
las of normalized cocycles, instead of the cohomology groups, are necessary in
many respects of mathematics and physics. Besides the connections to braided
linear Gr-categories and DW invariants involved in the present paper, normalized
2-cocycles are necessary in projective representation theory of finite groups [11, 22];
normalized 3-cocycles are indispensable in the classification program of pointed
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finite tensor categories and quasi-quantum groups [8,9,12,17, 19, 20]; normalized
cocycles of all degrees are very important in the theory of symmetry protected
topological orders [2, 3, 29].

Our approach of formulating the normalized cocycles is straightforward and ele-
mentary. First we construct a Koszul-like resolution of a finite abelian group G by
tensoring the minimal resolutions of cyclic factors of G and give a complete set
of representatives of cocycles for this resolution. Then we construct a chain map
from the normalized bar resolution to this Koszul-like resolution. Finally we get
the desired explicit and unified formulas of normalized cocycles on G by pulling
back those on the Koszul-like resolution along the chain map. We remark that, in
principle, the method of Lyndon-Hochschild-Serre spectral sequence may also help
one formulate explicit forms of normalized cocycles with nearly as much effort as
we need here.

Here is a brief description of the content. In § 2, we provide formulas of normalized
cocycles of all degrees on any finite abelian groups. In §3, we use the formula of
normalized 3-cocycles to determine the braided monoidal structures on linear Gr-
categories. In §4, we give a formula for the DW invariant of the n-torus for all n
and obtain the dimension formula for irreducible projective representations of an
arbitrary finite abelian group.

2. Explicit formulas of normalized cocycles on finite abelian groups

In this section, we use freely the concepts and notations about group cohomology
in the book [30] of Weibel. Let G be a group and (B,, ds) be its normalized bar
resolution. Applying Homzg(—,k*) one gets a complex (B, 9%). Denote the group
of normalized n-cocycles by Z™(G,k*), which is Ker 9. In general, it is hard to
determine Z™(G, k*) directly as the normalized bar resolution is far too large. Our
strategy of overcoming this is to get first a simpler resolution of G whose cocycles
are easy to compute and then construct a chain map from the normalized bar
resolution to it which will help to determine Z™ (G, k*) eventually.

2.1. A Koszul-like resolution

From now on let G be a finite abelian group. Write G = Z,,,, X - -+ X Z,,, where
m;|lmiy1 for 1 <i <n—1 and for every Z,,, fix a generator g; for 1 < i < n. It is
well known that the following periodic sequence is a free resolution of the trivial
Z,,-module Z :

s Do, 2 Do, 2 D, 5 T, 57— 0, (2.1)

where Ti =0gi — 1 and Ni = E;rio_l gz

Consider the tensor product of the above periodic resolutions of the cyclic factors
of G. The resulting complex, denoted by (K, ds), is as follows. For each sequence
ay,...,a, of nonnegative integers, let ®(aq,...,a,) be a free generator in degree
ai +---+ a,. Thus

Kn:= P (26)2(ay,... an).

ai+---t+an=m
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For all 1 < i < n, define

0, a; = 0;
di(®(a,...,a,)) = (~1)Z1<i “N;®(ay,...,a; — 1,...,a,), 0 # a; even;
(—1)Zl<i“lTi<I>(a1,...,ai—1,...,an), 0 # a; odd.

The differential d is set to be dy + - - - + d,,. Then (K, d,) is a free resolution of the
trivial ZG-module Z. The main goal of this subsection is to determine the explicit
cocycles of this Koszul-like resolution.

For the convenience of the exposition, we fix some notations before moving on.
For any 1 <ry <--- <1 < n, define (I)Tfl“'rfl =®0,...,A1,...,N,...,0) where
Ai = 1 lies in the r;-th position. If \; = 1 for some 1 < i < [, sometimes we drop it
for brevity. It is clear that any cochain f € Homyq (K, k*) is uniquely determined
by its values on (I)Tfl"'rfl' Write f’ri\l“_’r;\l = f(q)rfl---rf’ )

THEOREM 2.1. The following

far x =1if A\ is even,
oo @ X1 M
f € Homgg (Ky, k*) frfl...rl” =Gm,, ' i Aris odd
and 0 < arfl---rfl <my, for1<r <---<r;<n
where \y +---+ XN =k, \; > 1for 1 <i<lI
(2.2)

makes a complete set of representatives of k-cocycles of the complex (K7, d3).

Proof. Suppose [ € Homyq (K, k*) is a k-cocycle. We will show that f is coho-

mologous to one in (2.2). Let g € Homzg(Kj—1,k*) be a (k — 1)-cochain given by

Gyttt = 1if pq is even and Gpbr pit = (fruﬁlmrul)l/m"l if 1 is odd. Consider
1 1

f'=f—d*g. Then clearly f', , =11if A\; is even. If A\; is odd, then by the
(S
cocycle condition for f’ we have

S A+l
! My H / (—1)Z=i<i ™t T im,., -1
(friln_,rl)‘l) (frlerl“_r;\i—lmrlxl) .
2<i<l
\; even
AL

a A1
! My / _ 1T
Hence (fpl‘..r*l) =1, so fMl...T*t = Gm., for some 0 < RS < My,
1 1 1 1 g

Suppose that f; and f, are two cocycles in (2.2) satisfying f1 — fo = d*h for
some (k — 1)-cochain h € Homyg(Kj—1,k*). Similarly as above, after subtracting
a (k — 1)-coboundary from h, we can assume that hrTl_“Tﬁz = 11if py is even. If A\
is even, then

r —1)Xi<iN -

(f{ — fé)’riluﬂ"l)\l = (h”'il_l“‘ri\l)m 1 H (hri1~~7“?i71~~’rl)\l)( )=d T My
2<1 <
A; even

= (b a)™ =1
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If A1 is odd, then by the preceding equation and the condition m;|m;4q for 1 < i <
n — 1 we have

1) Zi<i N,
(fr = f2) o = 11 (h,.lh.,‘rixrl..,,.;z)( DEsme =,
2<i<!
A; even
Hence f1 = fg. O

COROLLARY 2.2. If G = Zyyy X+ X Ly, where m;|mipq for 1 <i<n—1, then

L) (Y

H*(G,k*) = f[ L}
r=1

Proof. By theorem 2.1, H*(G,k*) = [["_, ZNF" where

Nk)r:#{(Tg,...,rl,Al,...,)\l) €N2l71|7”<7”2 LR ]
<A+ + N =k, A\ odd}

k
=3 (7_:)#{()\1,...,)\1) ENYAL 4+ N\ =k, A\ odd}.
=1

Denote si; = #{(A1,..., A1) € NYAL + -+ XN =k, A odd} and ¢ = #{(\1, ...,
>\l) S Nl|>\1 ++ N =k, even}. Then sp; =1tpr1; and sp; 4ty = (k_1>.

-1
Hence
k
n—r\( k-1 n—r+k—1
Ny + Ne1 :l; (l—1><l—1) B ( e )
Therefore, Ny, = Z?Zl(*l)k” (n—;i-{q) .

2.2. A chain map from (B,, 8s) to (K,,ds)

We need some more notations to present our chain map. For any positive integers
s and r, let [s/r] denote the integer part of s/r and let s, denote the remainder of
the division of s by . When there is no risk of confusion, we omit the subscript in
sl It is easy to observe that

{Hﬂ _ [s+t— [t/r]r} _ [SH} - H (2.3)

T T T r

for any three natural numbers s, ¢t and r. We need the following technical lemma
for later discussions.
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Cocycle formulas on finite abelian groups with applications 1941

LEMMA 2.3. Let r be a positive integer. For any 20+ 1 natural numbers

ai, Go,...,a241, we have the following equation
l
Z {0214-1 + a2l:| o [CLQH-S + a2i+2]
‘ r
=1
y (l:a21‘+1 + (ag; + a2i—1)/:| B |:(a2i+1 +ag;)" + a2i—1:|)
r r

| G2i—2taz-3| |azta
T r

_ agi41tag | |aztaz|  |aytay-1| |a2ta
r r r r '

Proof. By (2.3), we have

[a2i+1 + (a2 + a2i1)lj| B |:(a2i+1 +a2) + a2i1:|

T r

_ | G2i41 taz | | a2+ a2
T T '

Then the lemma follows by an obvious elimination of consecutive terms. (]

Now we are ready to give a chain map from the normalized bar resolution (B, s)
to the Koszul-like resolution (K,,ds). Recall that B, is the free ZG-module on the
set of all symbols [hq, ..., h,;,] with h; € G and m > 1. In the case m = 0, the symbol
[] denote 1 € ZG and the map 80 =¢: By — Z sends [] to 1. For a more concise
formulation, denote (g;), := >_'_ =0 gj for 1 < i < n in the following.

The first four terms of the chain map, which will be used for later applications,
are as follows:

9" -+~ 1] Hzgl' 19,71 (95)i, D

F: B2 — K2
n . .
. . . . . . 45, 487 Z + j
97 - g gl gl = Y g T g {m] D,
s=1 S
STogtg Tl gl (99). (90)i, Pt
1<s<t<n
Fy: By — Ky
g1 - gir gl - gir gt - 9]
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n
r+kr +k o1tk i —
HZ{ } PR g R g g (g0)i, By
my
r=1
Jrtke| itk re1tkeo1 i i
+ [ . ]9{1+ L gl T g g (900, B
1<r<tsn r
g i+ P N
+ > [] G g T g g (g0 )k, B
my
1<r<t<n
] it — j js— k kyp_
- > gt g (i glt gl (995,08 0 (9 )k Prts
1<r<s<t<n
F4 : B4 — K4
i1 in o J1 in k1 kn 1 In
91 g 91 g9t g 9y 9]
n . .
ke + b | [ir 4 Jr | iy tjitk ir—1+ir—1+kp— 1+l
'_}Z|: :| |:Tmrr gil o ! P ’IZ"—ll ! ' ! 1(p7"4
k. +1
I L
1<r<s<n r
y |:Zs +.]5:| gll'l-i-jl _._gis_—ll+js—1¢)r252
mg
[Js +ks| jitn etk 1 Lo
- > | g T g (g
ms
1<r<s<n - -
X gt e (9s)i, Pt
kr + 1] gy Fepo1le_1 j .-
- > =g g g (9,
my
1I<r<s<n = -
X gy g (9s)i, Bras
k +l k-1 kpr_1+1,._ j s—
- > {] gt gt gl gl (94),,
my
1<r<s<t<n
X g th—l (gt) (b'r‘zst
[4s +ks] i T P
- > } gl gl gl g (g,
mg
1<r<s<t<n =
X gil : 921711 (gt)it (brs%
(3¢ + Je | iysy i1 +jea 1 Lo
- > ] g g T g g (g,
myg
1<r<s<t<n -
ngl gs, (gs) (I)rst2
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l Ly k ks_ i
+ D e g ey kgl gl (90
I<r<s<t<ugn

X g1t gy ()i Prstu

for 0 < iy, Jry by I, <my. and 1 <7 < n.

In general, let o := (a11, ..., Q1n, - .o Qk1, - - ., Q) Where each ;5 € [0,m;) and
is viewed as an integer modulo m; for all 1 <4 < k. We also write o = (o, ..., o)
where ay, = (1, ..., un) for 1 < u < k. For brevity, in the following we denote

the group element g{*' --- g% by g%. Given any 1 < r < n, [a,b] C [1,k], a,b €N
and «, denote

Abr + 17 | [aasrrtoar
m, e
ga glabl+"'+aa1 e ggg{71+-"+aa,r—17 a—2b Odd7
rab] T
pyr + Qp—1,r . |:0ta+2‘r+(la+1mj|
my mr
aprt g1 ap -1t -1
g; S (9r)anrs a — b even.
Define

k
Aids
g™, g™ = > Yo (FDZasmima A rifar bl Erfanb) B

where a, = Y\_ ur1 Ni + 1 and by,
[ai,

Z o Ai for 1 <u <. Clearly, the interval
[1, k] is the disjoint union of the i]’s.

b;
PROPOSITION 2.4. The following diagram is commutative.
Os B, ) By 01

ool s ]

~4>K3—d>K2—d>K1—>KO—>Z—> 0

'HBB BOH24’0

Proof. We start with some conventions. Denote

£r = {Nr, A even;

T, A odd.
Then
P— —_— A]‘ ...
d(I)rlxlmrlAL = 5rf1 (I>T3171__4T;\, + (-1 57,;2(1)7,;\17,;271“_7“?1 +
+ (—1))‘1+"‘+Al’15 PUR > I P Vi
T Ty
For any given a = (« « « Qkn), let o = (« ay), o' =
y g 115+ Gdny e ooy 1y ooy km )y 25, XLk,
/
(a1, ap—1) and o, = (@1, ..oy Qu—1, Qo F Qi 1, Quga, -, ), VI <u<k—1.
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With the above notations, dx([g*!, ..., g**]) becomes

gal [gaz’ A ’gak] + Z(i]‘)u[gal?' M ’gau717gau+au+1’gau+2? A ,gak]

+ (_1)16[90517. o 790%71]'

Then the coefficient of ® x, x, in Fr_10k([g*, ..., g%]) is
L ot

’

1) acici<i NN o o . E yugsn R
( 1) SIS 9 Sr1 [a1.b1) Thalvbl + frl,[al,bl] grl,[al,bl]

" 1"

+ (—1)k§g1,[a1,bl] e '5?1,[,“,1)1] (2.5)

where a, = ZZ,HH Ai+1 and b, Zi:u Ai. For 1<r<n, [a,b] C[1,k—1],
a,b € N and «a, we have

« 3 .
Ean = 5 b = ey and € Srfaripp 0
r,[a,b] T Sr,Ja+1,b+1]° r,la,b] = Sr,]a,b b let :
rlab] = & lat)’ if u > b.
Hence
k—1
pee o,
(=1) fn;[ahbﬂ o Eru[az,bz]
u=1
_ U «@ 0‘;
= § (_1) grl,[a1+1,b1+1] e g”’i—la[ai—1+11bi—1+1]£Ti7[ai7bi]
i=1 u=a;
a
X §T1+17 [@ig1,big1] "7 g7’1,[¢lz’bz]
_ § :f @ ga e
ri,lar+1,b14+1] " ri1,lai—1+1,bi 1 +1]5rip 1, [aip1,big] r1,]ar,bi]
b; ,
U Xy
x Z (_1) §r“[a,,b]
uU=a;

Therefore we can rewrite (2.5) as

T NP k
(-1 ](galffl,[a1+1,b1+u"'53,[al+1,bz+1]+(*1) riolanb) " € fanb)

l

« « « «
+ Z§T1,[a1+l,b1+1] T 57’1’—17[ai—1+17bi—1+1]£7’i+17[ai+17bi+1] e Erzy[az,bl] (2'6)
i=1
b;
x (= n,[al,b]>
u=a;
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b;

u=a;

It remains to compute » (—1)“52“[% ;- This is split info two cases according
to the parity of b; — a;.

If b; — a; is odd, then

> D (27)

_ (_l)ai Qp,41,r, + O, . Q42,7 T (O‘az‘,ﬁ: + aa'i+177'i)/
My, m,.,

i i

+ (_1)ai+1 Qb 41,0, + Qb . (aaiJrlﬂ”z‘ + aai+2ﬂ“i)/ + Qa;,r;
My, my,

i k3

!/
(1) [(a‘”’” + Witr) +O“’i—1»’"i] {%HT“L%TD
My, my,

i i
Qp, 41,1t Qp; 1,y —1FFa;,r—1
1 g
Lemma2.3 (=1)™ Abi+1,r + Obiri | | Qa+2,r T Qai+1,ms
My, My,

k3 i

+(_1)bL abi,’l”i + abifl,’r’i . aaiJrl,T‘i + O‘ai,ri
my. my.

k2 K2

p, 41,1+ a1 o Qp, 1,y —1FF Qa1
1 Ti—l

_ b: v A, 41,1 X, +1,r; —1 a; o Qa1 Xa,,r;—1
- (_1) 1§Ti,[ai’bz‘]gl 91 +(_1) qgrig[ai+1’bi+1]gl e
If b; — a; is even, then similarly we have

b;

Z (71)u€:¥i%[aiybi] (28)

U=a;

= (-1 {%H,n + ab} {aaﬁsmi + aaﬁzmi}

my, my,

Ap, 41,110, 1 Qb 41,7, -1+ Fa; r,—1
1 o 'griil ’ (gri)((yai,ri'f‘aaiJrl,ri)/
/
+ (_1)a,;+1 Qpi+1,r; T Qb g | Qa3 + (aai—&-l,m + aui+277'ri)
My, M.,

i k3

+ e
my, My,

i i

+ (_1)ai+2 |:abz‘+1,7“i + abiﬂ”z‘:| . |:(aaz‘+2,7“i + aai+3,ri)l + aai+1,Ti:|

+ (_1)1771 |:(abi,7‘i + abri-lﬂ'i)l + abi—177"i:| .. {aa'i+277'71 + Qg1 :|)

mf‘i m"’i
Qp; 41,1 Foa; 1 Qp;41,r; -1+ Fa; r—1
1 91 (gn‘)aai,ri
_ (_l)ai {abr‘rl,m + O‘qu,mil o |:Ola,-+3,ri + aai+2’ri:|
My, My,

b 41,1 a1 Qb 41, —1FFa; ry—1
1 ’l“ifl
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a;r; + Qa4 N
N Gr)aw, o +oa s — T R

[

+ (_l)aiJrl b +1,r; + Qb | Rait3r + Q42
m m
T T

i k3

+ (_1)bi [abiﬂ”i + abiflﬂ”i] |:aai+2ﬂ”z‘ + Qa1 :| )
My, M,
Qp; 1,1+ F a1 Ap 1,y —1FFa; r—1
1 1 (gn)aawi
— (_1)111' |:abi+177‘z‘ + abi,ri:| . |:aai+37""i + aai+277"i:|
M, My,
Qp; 1,1+ Qa1 Ap 1,y —1FFa; r—1
1 -1
Qq;ri T Qa4
: ((g'ri)aai,r,i“raai«{»l,r,i - (gri)aai,r,i - |: m NTi
T4
+ (_1)bi Qp g + Qpy—1,r, . g, +2,r, T Qait1,r
mTi mTi

b 41,1+ a1 ab,i+1,r,i71+“‘+0ta7¢,”71( )
1 r;—1 i) Qg

i Qay, Qayirg i1
= (D" o g g (CDE e
+ (71)bi€n7[a“b ]g?b M ‘g:ibitl’rii
On the other hand, the term ér*l...rkz in dFy([g™ ,g°]) comes from the
1 1

differential of the terms

d A1+l Ao Ay T o A1 Al—1 A +1, P A1 ALy d A1 A2 Ay T
r Ty 2T riteer Tty STyt ritsry?eer)
P LS T B P V) @ AL M
it D7 s 71 rits

in Fi([g™,...,g9%]). Therefore, its coefficient is
g g

Docicici NAFY L Aj ca L ea a
z : (_1) st ! 7 ]£T17[a1+1;b1+1] é""ufl)[a'u—1+17b’u71+1]§T'u)[au)bu"l‘l]

1<u<l
(2.9)

ca o PTY VEE W
§Tu+1,[au+17bu+1] 7"17[azybz]( 1) 57“3”“

7‘171
S (- 1) rsicsa MAFE LA o o
+ (—1)&=rsi<ist ! rla[alvbl] 57‘17[al7bz]§57[’f»k]T3
s=1
-1 Tut1—1

1S rcicsa AHELL A o
+Z Z ST R it Lbi 1] S au b 1]

u=1s=r,+1
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A4 Ay
’ gs,[au,au] z1+1,[au,+1,bu+1] T éh?(”)tu[al,bz](_l) v Ts

4 E 21<1<J<L>‘ MY A
5= rl—i-l

goc
71,[¢11+1 bi+1] " ri,lar+1,bi+1]

1

X EX (1) == N T

Noting that &7, Ts = gi'" - g7 (gs™* — 1), then one has the following
equations:
7‘171
XX+t
P G e A R ERER o S e
s=1
’I‘1—1
AiXj
= ( )21<1<J<l AR le[alabl] fg,[az,bz] Z Eg[hk]Ts
s=1

_ i NiNj+Do i el Qe,ry =1
- ( )EK SIS Eiaa Tlv[a11b1] ggh[alvbl](gl " -”gh*ll 1)’

1—1 rutr1—1

Z ; i\ -l-z:1 «
Z Z st ! frl,[a1+1 bit1) " rulau1,bu 1]

u=1s=r,+1

& anbi] (=1t

Sylaw,au]Sry 1, [ayt1,buti]

-1

_ Z P XX+ A ca a
Z ISt + é."’1,[0‘1"'17bl"!‘1] T gruv[au,"l‘lvbu"rl]

Tut1—1

@ @

Put1s[@ut1,bus1] €T'l7[al,bl] Z fs,[au,au]Ta
s=r,+1

-1

_ S iy MAAD L A ga .o
—Z(—l) ISigsE G et 1o 1] T e [aut 1,bu 1]

u=1
@ e Qaq, 1 QXay,ryp1-1 _ Qayl DXy, oy
Tut1,[@ut1,butt] Tz,[al,bl](gl gru+1*1 9 "Gru )

n
SRSV PR o LD W W
Z (-DZasicoa idtiin a1 11] " Sl e (F D) == T

_ S lcicicl Aidj e e a Q1n 11 XL,my
= ()= 757'1,[@1-"-17171-"—1] “ '57'17[az+1,bz+1] (g TR )-

With these, (2.9) becomes

LN\ icicia NN S A e o
D (Pl A A ] aw s +Lbu 1 (2.10)
1<u<l

a ¢ s £ it

Ty [@u 0o +1] S04 1, (@ 1,0041] ri,lar,bi]“ry
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i\ « ap X, rq —
+( 1)21<L<1<l T le[al,bl] gﬂﬁ[azybl]( grlkfl f - 1)

Z A\ +Z Ai ¢cv ]
+ Z tsisast e lart L 41] " S aut Lbu 1]

a a Qa1 X, ryqq1—1 Qa1 Qg ,ry
’ 57“u+1,[au+17bu+1] e é'f’z,[aubz}(gl -1 — 9 T Gry )
Dicici<i Nidjea g 22! Qln Qi YN
(D)=t e 1 St (91 gt — g g ")-

We need to prove that the two formulas (2.6) and (2.10) are equal. By cancelling
their obvious common terms, namely the first two terms of (2.6), it suffices to prove

E & & & RRES
ri,lar+1,b14+1] " ri1,[ai—1+1,bi—1+1]5rip 1, [aipr,biga] r1,[ar,bi]

X Z ufr,,[al,b ]

=a;
l

_ _ Zf: i e e a

—E:( L R S P T SO AR TS| S Y

u=1
« {63
Tu+17[au+l1bu+1] grz’[al,bl]grﬁ“+l
+ L_u+1>‘ ga‘ ...fa
r1,la1+1,b14+1] s [@u+1,0041]
« o Qag1 Qay,ry1— Qay1 Qay oy
X 5Tu+17[au+1,bu+1] T £Tz,[llz,bl] ’ (91 U 9ra—1 I "gra )
« a oy Xf,ry—1
( ) 7‘1,[<117b1] T 57"17[‘11,171]9 “ 91
A1,y

€T17 a1+1 bl-‘rl] 57?;7[al+17bl+1]g(1x11 e ng
Note that the latter is equal to

l
1
DY
Z(_l)ZFU_H €g1,[¢11+17b1+1] T 570‘;—17[a/u71+17bu71+1]£"Ofu7[a/u7bu+1]

u=1
o . 1w + E =u g
Tut1,[Gut1,but1] ?”17 ay,by]“rputt r1,la1+1,b1+1]
o o a Qa1 Xa,, _q,ry—1
Tu—l7[aufl“rl,bufl“rl]gru7[au’bu] T ng,[az,bz]gl 9,1
l

_ ) b Mg ...

Z< D&zt MG a1 bi1] T S faut Lbu 1]

u=1
o Hay,l . QXaqy Ty
Put1s[@ut1,bugr] frh[al,bz]gl "gra
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Cocycle formulas on finite abelian groups with applications 1949

1
ZE ¢ g o g
r1,la1+1,b1+1] ru—t1,[au—14+1,bu—14+1]Sruq1,[auq1,bug1] ri,[ar,bi]
u=1

l i W Qa1 Qay g,y —1
'((*1)212““ & bt Erut + (S22 MG g 1

Tou—1
N\ i Nica Qayl | Oay.ry
(=1)%imuts o Jaut1,bu+1]91 Gra, .

Now it is enough to verify that

b;
u 0‘; L i o
D gy = (CDZ MG e
U=a;
i o Qa, _ Qlay _q1,ru—
+ (_1)Zi=u i Tu,[au,bu}gl 11 ”.grufll 1 (211)

N\ N Qayl | Qay,ry
(—1)& =t MR a1 b, 11191 Gra = -

The verification is split into two cases. If b; — a; is even, then the equality is
immediate simply by noting that

l l
ay= Y N+l bu=) A
i=u+1 i=u

If b; — a; is odd, noting that

(_1)Zi=u+1 ’\ié‘a

ru,[au,bu+1]€r3u“

l i Qqy s ATy —
(—1)&i=usr Affn,[auﬂ,buﬂ}g? Legpomy "(9r)awy ., (9r, — 1)

l )
(—1)Zi:u+1 Alggua[au"l‘labu"rl}g

then the equality (2.11) follows.
The proof is completed.

QXay,1 Qay,ry—1( Xay,ry
1 O, —1 ( Tu _1)a

2.3. Normalized cocycles

Denote
Qpr + Qp—1,r Qq+1,r + Qar
e , b — a odd;
ey my my
Ny [a,b] =
e Qpr + ap—1,r Qg42,r + Q41,7
. Qar, b — a even.
m, m,

COROLLARY 2.5. The following k-cochains w € Homgg (B, k*) given by

S icicicl NiXi
o on (mD=isi<Ist™ ]ngy[alvbl]"'nfp[apbzlari\l...rl’\l
oo™ oD =11 I G

=1 1<r << <n
A1+ +A=k,A\1 odd
Ai=1 for 1<i<I

(2.12)
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1950 H.-L. Huang, Z. Wan and Y. Ye

where a, = ZLUH Ni+1, b, = Zi:u i and 0 < arf1~--rfl <my, for 1<r <

-- <1y < n form a complete set of representatives of k-cocycles of the complex
(B:,95)-
Proof. It follows from the chain map (2.4) and theorem 2.1. O

2.4. A chain map from (K,,ds) to (Bs,0e)

For completeness, we also include a chain map from the Koszul-like resolution
(Ko, de) to the normalized bar resolution (B,, de ). This chain map is very useful for
comparing cohomology classes of normalized cocycles and for studying the whole
cohomology ring structure, etc.

Denote an ordered set of A elements as

A \ = (NT‘agTvNTagT7"~7NT7g7")7 )\eVen;
o (gmNragr,ergr---,Nragr)a A odd.

Given a set of positive integers Ay, Ao,..., A\, with A\ +---+ XN =k, let
Shuffle(Aq, ..., A;) be the subset of the permutation group Sy such that the ele-
ments of it preserve the order of elements of each block of the partition (A1, ..., \;).
For each k, define a map

Gk: Kk HBk

VD RN ) (A LR W)
oeShuffle(A1,...,7\;)

PROPOSITION 2.6. We have the following commutative diagram

—>K3—d>K2—d>K14d>Ko4>Z4> 0

o o o |

By -8B, %2 B Y sy —

Proof. By direct verification similarly as the proof of proposition 2.4. The detail is
omitted. g

2.5. A translation to quantum field theory

Now we follow the notations in [29] and translate our result into quantum field
theory language. Let G =Zy, X -+ X Zy, where N;|N;4q1 for 1 <i<n—1. Let
k=d+1 be the spacetime dimension. For 1 <I<d+1, 1<r < ---<r <n,
A > 1 for 1 <i <, define

b JAndA AL odd;
riti = dA,, - dA,,, if \; even.

We generalize the correspondence between the partition functions of fields and
cocycles given in [29].
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Cocycle formulas on finite abelian groups with applications 1951

The generalized correspondence connects the part

(- 1)21<‘L<]<l AiAj

N

J o
77T1 [ag,b1]"" nTLw[@waz]arfl,.,rl*l

1

of (d + 1)-cocycle wgy1 and the partition function

N}\l 2[)\1/2} . N)\l 2[)‘l/2]
/ B B

Yi1<i<i<l N Jja
(pFriestitia A @2m) a2 D) /2]

CN

1

where the corresponding terms of A, and dA, are given in [29] and the order of
A, and dA, is so arranged that their positions indicate which component of o they
correspond to. Note that a = (aq,...,@q41), A1 + -+ A =d+ 1, and )y is odd.
Our result reveals the fact that we do not need higher form fields B, C, etc, to get
a complete set of representatives of cocycles.

Now we explain how we get these partition functions. First, any 1-form field is
the linear combination of the wedge products of some A, and dA, where each

A, appears at most once, i.e. the linear combination of P, A o, M for some 1 <
I<d+1L, 1< < <rm<n, \; =21for1<i<l. After mtegratlon by part on
Ik GO A, We need only consider those terms Wlth A1 odd.

1

Due to a discrete Zy gauge symmetry, and the gauge transformation must be
identified by 27, we have the following general rules:

%Au =N mod 27, ]{5/1“ =0 mod 2.

We consider a spacetime with a volume size L' where L is the length of one
dimension, for example 79! torus. The allowed large gauge transformation implies
that locally A can be:

2mn,, dx 2mm,, dx
A, = EMMu G ey AT Gy
ot N,L “ L
Now we consider the partition function exp(ik AL qu Mo /\1) with g

odd. Note that 6(dA,)=0. Thus for the large gauge transformatlon7 we have
ki x [8(¢ ¢ x) =0 mod 2w. This implies
LT ™ 1

NA2—22/2] A2/
o () T
Rt TP (2m)[Cat D2+ +[u+1) /2] -1

where URSTIES 7.
l

Downloaded from https://www.cambridge.org/core. University of Science and Technology of China, on 18 Feb 2022 at 22:04:04, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2019.15


https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2019.15
https://www.cambridge.org/core

1952 H.-L. Huang, Z. Wan and Y. Ye

For the flux identification, we have

oA +1) /2] 4+ +[(\i+1) /2] [T(k1+1)/2} [T(/\z+1)/2]
ko /d’r*l = i A1—2[1/2] - 5 —2[\ /2] =
1 1 1 1 erl 1 . an 1
Hence

(2m) [t/ 21y
L ot

~ (2) (D2 D21 =22 yhe2i2)
Tl ...Tl T T

Here ~ means the level identification. Therefore, the cyclic period of p x, _ x, is Ny,
1 L
Finally let (—1)Zl<i<i<l AiAJ’pTM__'TAl =a . Then we get the partition
1 l 1 l

functions in correspondence with cocycles.

3. On Braided linear Gr-categories

The monoidal category of finite-dimensional vector spaces graded by a group G,
with the usual tensor product and associativity constraint given by a 3-cocycle
w is denoted by Vecg . Such a monoidal category is called a linear Gr-category.
The terminology goes back to Hoang Xuan Sinh [14], a student of Grothendieck.
The aim of this section is to give a complete description to all braided linear Gr-
categories with a help of the explicit formulas of normalized 3-cocycles. This extends
the related partial results obtained in [1, 18,21, 24] to full generality.

3.1. Monoidal structures

Recall that the category Vecq of finite-dimensional G-graded vector spaces has
simple objects {Sy|lg € G} where (Sy)n =041k, Vh € G. The tensor product is
given by Sy ® S, = Syp, and S1 (1 is the identity of G) is the unit object. With-
out loss of generality we may assume that the left and right unit constraints
are identities. If a is an associativity constraint on Vece, then it is given by
as;.s,.s, =w(f,g,h)id, where w: G x G x G — k* is a function. The pentagon
axiom and the triangle axiom give

w(ef7g, h)w(67 f?gh) = w(67 f?g)w(e’ fg7 h)w(f7g7 h)’
W(f71,g) = 17

which say exactly that w is a normalized 3-cocycle on G. Note that cohomolo-
gous cocycles define equivalent monoidal structures, therefore the classification
of monoidal structures on Vecg is equivalent to determining a complete set of
representatives of normalized 3-cocycles on G.
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Cocycle formulas on finite abelian groups with applications 1953
3.2. Normalized 3-cocycles

In the special case k = 3, if we abbreviate a,s by a,, a,,2 by a,s, then (2.12)
becomes

w: By — k* (3.1)
[g;’-l .. .g;n’g-{l .. .g?]{"hgfl .. .gi”}

n
arir[(jr‘i’kr)/mr] arskr[(is+js)/ms] —arstkrjst
= H o, s m, '

r=1 1<r<s<n I<r<s<t<n

where 0 < a, Upg, Qrgp < M.

REMARK 3.1. The present complete set of representatives of normalized 3-cocycles
is slightly different from that in [18,20]. Of course they are equivalent up to
cohomology.

3.3. Braided structures

Now we consider the braided structures on a linear Gr-category Vecg . Recall
that a braiding in Vecg is a commutativity constraint ¢ : @ — ®°P satisfying the
hexagon axiom. Note that ¢ is given by cs, 5, = R(x,y)id, where R : G x G — k*
is a function, and the hexagon axiom of ¢ says that

R(zy, 2) wrzy) o Rleyr)  wl@y 2wy z o) (3.2)

R, /Ry, 2) oy D(ermry) R y)R(@2)  wly,a2) |

for all z,y,z € G.

In other words, R is a quasi-bicharacter of G with respect to w. Therefore,
the classification of braidings in Vecg is equivalent to determining all the quasi-
bicharacters of G with respect to w. It is interesting to remark that the braided
monoidal structures (w, R) on Vecq appeared already in the 1950s in terms of the
so-called abelian cohomology of Eilenberg and Mac Lane [6, 7].

3.4. Quasi-bicharacters

Clearly, any quasi-bicharacter R is uniquely determined by the following values:
rij = R(gi,9;), forall<i, j<n.
PROPOSITION 3.2. Let 75 € k* for 1 <4, j < n. Then there is a quasi-bicharacter

R with respect to w satisfying R(gi, g;) = 1i; if and only if the following equations
are satisfied:

Tt =G =Gty for 1<i<n,
T;?‘*Tﬁ"'—l, a;; =0, for 1<i<j<mn,
arst =0, for 1<r<s<t<n
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1954 H.-L. Huang, Z. Wan and Y. Ye

Proof. ‘=’. For the case r < s <t, consider R(g:gs,9r) and R(gsgs,gr) which
obviously are equal. By (3.2), we have

w(gTv gt, gs)w(gt7 s, 97)
w(gt, Grs gs)

= R(9¢, 9r)R (s Gr )G ™",

R(gtgsa 97) = R(Qn QT')R(gsy g'r)

w(gra Js; gt)w(gsa Gt gr)
w(gss gr» 9t)

R(9s9¢, 9r) = R(gs, 9r)R(9¢, 9r)

= R(gsa gT)R(gt7 97)

Therefore, C;L‘:Tsf = 1. Since 0 < a5 < My, we arrive at a,. = 0.
For any 1 < ¢ < n, applying (3.2) iteratively, we have R(g;, g7) = R(9i, 9:)® and
R(97,9i) = R(gi,g:)° for 1 < s <m; — 1. Then

w(gia i, g;'m’i_l)
m;—1

w(gwgwgl )w(giag:ni_lugi)

1 =R(gi,9/") = R(9i, ) R(gi, g ")

= R(glv gl)ml ’;L,(,-lia
)w(g?“’l, 9i.9:)w(9:, 9", g1)

w(gzmi_lv 9i, g’L)

1=R(g", 9:) = R(g[ ", 9:)R (g, i
= R(glvgl)m7 g,f,i-

LM ay . f—ay
Thus ;" = (pi = (0.

Assume i < j. Applying (3.2) iteratively, one has R(g¥, g;) = R(gi,g;)* for 1 <
k < m; — 1. Therefore,

)w(gé’”’l,gmgj)w(gj,gﬁni’l,gi)
w(g™ " 95, 9:)

1=R(g", ;) =R(g" ", 9;)R(g:. 95
=R(gi,9;)™".

This implies that 7" = 1. Applying (3.2) iteratively, one has R(g;, gf) = R(9:,9;)"
for 1 < k < m; — 1. Therefore,

i—1
w(g]aglag_;mj )
w(girg5,9; " w(gj, 957 5 i)

1="R(gi,9") = Rlgi» 9;)Rlgi, 97" ")

— i —aiy
=Ty Gy

. . . m Qi . ;i .
This implies that rij’ = (m; . Since m;|m;, we have (] = 1. Since 0 < az; < my,

we arrive at a;; = 0.
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Cocycle formulas on finite abelian groups with applications 1955
Assume i > j. Applying (3.2) iteratively, one has R(gF,g;) = R(gi,g;)* for 1 <
k < m; — 1. Therefore,
)w(g?“_l,97:,9]')W(9j,g§"“1,gi)
w(g™ ™t 95,91)

1=R(g",9;) = R(g/" ", 9;)R(9i: 9
— R(ge,0;)™ 5.
This implies that 7" = Cmy ™ = 1. Applying (3.2) iteratively, one has R(gi,gf) =
R(gi, g;)* for 1 < k < m; — 1. Therefore,
—1
w(gjmgivg;n] ) _my
1 .1 )
w(gi 95,957 wl(gjr 95" 5 9i)

1="R(gi,9") = Rlgi 9;)R(gir 9" ")

This implies that r?;j =
The necessity is proved.
‘«<’. Conversely, define a map R : G x G — k* by setting

n
i1 i J1 Jn . is]s
R(gi g gl - gir) == [ rie-
s=1

We verify that R is a quasi-bicharacter of G with respect to w.
Let I:gil -~~g:1"7 y:g{l ggl"’ Z:g’lCl -ungL", then

n
] in . gl in ok kny — is+7s) ks
R(gh - gin . gl .. gin gkt ... gk )7HT§Z+J) ’
s=1

where (is + js)' denotes the remainder of division of is+ js by ms. Consider
Rz, 2)R(y, 2)w(z, x,y)w(z,y, 2) /w(z, z,y). By direct calculation, one has

w(z, 2, y)w(@,y,2) _ Hcalkl[(i,+jl)/m,]'
w(x’ Z7 y) m

1=1
Therefore,

w(z,z, y)w(w,y, 2)
w(z, z,y)

R(z,2)R(y, 2)

= H rgis+j5)ks H C%lkt[(iﬂrﬁ)/mt]
s=1 =1

_ H Tg(sis+js)/+[(is+js)/ms]ms)ks H C%Lkz[(iz-&-jz)/mz]

s=1 =1
n n n
_ H plistis) ks H C[(il+jz)/mz]mlkl H Cazkz[(ilJrjz)/mz]
- ss i my
s=1 =1 =1

is+7s) ks —ark;[(i1+75:)/m ark;[(i;+75:)/m
_ Hrgs +3s) Hcmlz Uit/ l]Hlell[(H‘Jl)/ gy
s=1 =1 =1
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This implies that

n
rlia ik = Ry, 2).

s=1

w(z,, y)w(r,y,2)

Rz, z)R(y, ) (2, 7.9)

The sufficiency is proved. O

4. The DW invariant of the n-torus

In this section, we give a formula of the DW invariant for an arbitrary n-torus
T™ associated with finite abelian groups. In the special case of n = 2, we recover
and improve some results obtained in [25]. This is due to the fact that as we
have an explicit formula of 2-cocycles, we are able to derive dimension formulas for
irreducible projective representations of finite abelian groups. This is of independent
interest.

4.1. Definition of DW invariants

Just as its name implies, such an invariant of 3-manifolds was introduced by
Dijkgraaf and Witten in [5]. Then it was generalized to arbitrary dimension in [10]
by Freed.

Now we recall briefly the definition of DW invariants. The reader is referred to
[5,10,25] for more details. Let G be a finite group and let [w] € H"(BG; k*). For
a closed oriented n-manifold M, the DW invariant of M is defined as

z[qu):ﬁ S (el ),

¢ (M)—G

where fy : M — BG is a map inducing ¢ on the fundamental group which is deter-
mined by ¢ up to homotopy, [M] is the fundamental class of M, and (,) is the
pairing H"(M; k*) x H,,(M;Z) — k*.

4.2. The DW invariant of the n-torus

The DW invariants of the n-torus for n-cocycle, implies the dimension of Hilbert
space on an (n — 1)-torus, 7"~ !, (namely the number of ground states). This is
a very important data for detecting the so-called ‘topologically ordered’ quantum
states in physics. Some special cases were computed in [4, 16,2628, 31].

In particular, the thesis of de Wild Propitius [4] considers the 3-dimensional DW
invariants, it discusses not only a few examples on the 3-torus partition function
but also the Lens space L(p, q) result in Chapter 2.9.

The calculations of twisted DW invariants, in terms of the mapping class group
MCG data on d-torus 7%, as the ‘quantum’ representation of MCG(T?) = SL(d, Z)
generated by the so-called modular S and T data, have been recently explored,
say in 2+ 1 (= 3)-dimensions [16] and in 341 (=4)-dimensions [26,27]. Roughly
speaking, the computations of these S and T data, is analogous to the computa-
tion of a partition function obtained from gluing two states (vectors) living in the
Hilbert space (a vector space) defined on D? x (S1)4=1 (or other topology, where
the manifold with a T%-boundary is associated with a state in the Hilbert space) —
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Cocycle formulas on finite abelian groups with applications 1957

the gluing along the spatial T torus is glued via the mapping of S and T data of
MCG(T9) = SL(d,Z).

Let Z4 denote the quotient ring Z/dZ and M, (Z4) the ring of d x d matrices
with entries in Z4. Fix a d-th primitive root ¢ of 1 and define

t A
ZAeM" zd)f ¢

N, (d) := I

LEMMA 4.1. The function N, (d) is integer-valued and s multiplicative on d, that is,
if d = dyds with (dy,d2) = 1, then Ny, (d) = Ny,,(d1) Ny, (dz). Moreover, for a prime p,

Nn(pm) _ Zpm(n72)p(m7i)(n72)(n71)Nn71(pi)(pni o pn(ifl)) + pm(n72)n.

i=1

PT’OOf. Take A= (aij) S Mn(Zd) Then detA = a11A11 + -4 alnAln where Aij
is the algebraic cofactor of a;; and thus

d—1
det A _ a11Aq |, ainAin
3 f 3

AeM, (Zq) a11=0 a1n=0

= d"#{B € M(;,—1)xn(Zq)|all (n — 1)-minors of B are 0}.

Hence N, (d) = #{B € M(,_1)xn(Zq)|all (n — 1)-minors of B are 0}.

Assume B = (byj) € M(;,—1)xn(Zq) is such a matrix all of whose (n—1)-
minors are 0. Define ord(bq,...,b1,) to be the smallest integer r such that
d|rbi1, ..., d|rby,. Clearly, ord(bi1,...,b1,)|d. Now suppose d = P where p is

prime. If ord(by1, ..., b1,) = p’, then plbu =p bu, e, Pl = p’”bln For¢ > 1,
if p|b11, ..., p|bin, then ord(biy, ..., b1,) < p*~ 1, contradiction. So we may assume,
without loss of generality, that p{ b11. In this case, the matrix

bi bz ... b,

0 1 0
P = ]

0 0 1

is invertible in M, (Zym ) Thus obviously, (biy,...,b1,)P~! = (pm~,0,...,0).
Assume (bi1,...,bin) P~ = (b),...,b, ) for i=2,...,n—1. Since all (n—1)-

minors of B are 0, al (n — 1)-minors of

0 ... 0
G Wy .. B,
b%—m b”n—l,Q b;—l,n
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are 0. Hence all (n — 2)-minors of

are 0 modulo p’. So we have

Nn(pm) _ Zpm(n—2)p(m—i)(n—2)(n—1)Nn71(pi)(pm' o pn(i—l)) +pm(n—2)n'
i=1
Denote S,(d) = {B € M(,—1)xn(Za)|all (n — 1)-minors of B are 0}. Then B
(B mod di, B mod d2) defines a map from S,(dids) to S,(d1) x S,(d). If
(d1,d2) =1, then this map is clearly injective and surjective by the Chinese
Remainder theorem. Hence N, (d1d2) = N,,(d1) Ny (d2). So if d = pi™* - - - pI* where
D1, .., pr are distinct primes, then N, (d) = N, (p7™) - - - N (pi'r). |

THEOREM 4.2. The DW invariant of the n-torus T"™ for a finite abelian group G is

1 W) s Jo
ZErmy = — Y Hoea, o iJow) (4.1)
|G| Fire fn€G ngSn\Anw(fU(l)a-~-7f0(n))
Let G =7, X XLy, where milm;11 for 1<i<l—1. If 1<n, then

ZWNT™y = |G|"Y. If 1=mn, then ZWN(T™) =|G|" 1/d”(” UN,(d) where d =
my/(mi,a1..n,). If 1 > n, then

a"”l'--rndCtA<1 n)
A (T") = Z H Cmrl "o T

|G| A 1< < <rp<l
where A = (ij)nx1 and 0 < a;; < m; for 1 <i< n.

Proof. The n-torus T" is obtained by gluing parallel edges of an n-dimensional
cube. The cube can be subdivided into n! n-simplexes such that each n-simplex has
n successive edges in common with the cube. If we label the remaining n edges of the
cube after gluing by f1,..., f, € G, then each n-simplex is uniquely determined by
a permutation (f],..., f/) of (f1,..., fn). The fundamental class [T™] is represented
by an n-chain o : A™ — T™ where ¢ is the sum of those n-simplexes with the sign
of which is positive if the permutation is even and negative otherwise. By [13,
p89] we may identify H"(BG; k*) and H"(G; k*). Then when ¢ runs over all group
homomorphisms from 71 (7") to G, we have

HG‘EAn w(fa(l)a ceey fcf(n))
Haesn\An W(fo1) s fom))

where f1,..., f, run over G. Hence (4.1) holds.

w((fs)([T"))) =
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Cocycle formulas on finite abelian groups with applications 1959

Now let f; = (w1, ..., o) where 0 < a5 < myj for 1 <4 < n. Recall that

> L s\
- (=D FISISISERNINT la1.b1) rg fag ) &2 Ak
k kK 1 rk
w(fh"'afn): II |I Cmrl

k=1 1<r < <rp <l
A4+ Ag=n,\1 odd
Ai>1 for 1<i<k

where ap, =1, by =X, ..., a1 =Xo+ -+ X+ 1, b=+ 4+ X =n.

|G| Fir fn€G ngSH\An w(fo(l)v SRR fa(n))

e T I I

firenfn€GE=1 1<r1<---<rp<l
A4+ Ar=n,A\1 odd
\;>1 for 1<i<k

Zl] (T™) = 1 Z HaeAn,w(fO(l)v ooy fom))

(—pFrsi<igk ridipe
HUEAn <m7"1

1\l 1<i<i<k NiNj e
(=1) 7 TN o ag),o(b1)] nrk,[a(ak),a(bk)]aril,,,T,]ik

(a3
[o(a1),o (b)) My lo(ag),o (b))% A1 Ak
1 k

[Loes,\a, Smr

If (A1,..., Ag) is a partition of n and A; > 1 for some i € {1,...,k}, then b; > a;
and 77 1 contains the term [(aw, r, + b, ~1,r,)/ms,]. Let 7 be the transposition
(bz,bz — ].), then

1) Z1<i<i<k NN g s
(mD7isisIs Mry,la,01] nrm[%,bk]a,‘il,.,y‘:k
mrl
Sicicic<k NiNj o
(-1) 1<i<j<k M ]er,

= Cmrl

[r(a1)r (b)) Mg [ ag)om ()] 4, A1 B

Hence

)l 1<i<i<k NN
1 Q( DTAISTSISETIL (o (a1).0 1) T [ (ar) o (019,20 A
oEA, SMry

=1
(—1)Z1<i<i<k NiNig

PLlo(an)o b)) I Lo (g ()] A

HaeSn\An Cm’"l

Therefore,

fiys fn€G1<r < <1y <1

(—1)nn=1)/2

HaeAn CmT'l

I1 C(il)n(nil)/za"(")le“'aﬁ(l)‘Tnarl"'Tn '
gE€SR\ A, STMry

Xo(n),r " Xo(1),rn Cry -
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Hence if I < n, then each summand of (4.1) is 1 and Z)(T") = |G|" 1. If | = n,
then equation (4.1) becomes

] (T") = | Z ’)Zaesn(_l)sign TN 20 o o
— 7|G| E ( fg-»-n)zgesn(*l)ﬁgn o (1)1 O ()
1
A

1 a e
— @ Z( mlln)d t A
A

where A = (aj)nxi and 0 < oy < mj for 1 < i < n. Denote § = n then £ is a
d-th primitive root of 1 where d = my/(my,ay..., ) In this bltuatlon

[w] Tn _ gdetA
- Gl4 Z

:ﬁ(%%)n Z gdet A

A€M, (Za)

:|G|n71 Z gdet A,

dn?
AEMn(Zd)

If I > n, the formula is similarly derived as the case | =n. Hence lemma 4.1
completes the proof. O

4.3. The DW invariant of T? and projective representations

In [25] Turaev observed the connection between DW invariants of surfaces and
projective representations of finite groups. In the case of T2, our theorem 4.2 recov-
ers some partial results of Turaev. Moreover, with a help of our explicit formula
of 2-cocycles, we are able to derive a formula for the dimension of an arbitrary
projective representation of finite abelian groups. This is of independent interest
on the one hand, and helps to improve some formulas in [25] on the other hand.

Now let G = Zy,, X -+ X Ly, with my|msz|---|m; and let w be a 2-cocycle on G.
In the case k = 2, (2.12) becomes

W(gil' gl a91 : H Cmamlsyr

1<r<s<l
Let Gy be the set of all w-regular elements in G, i.e.,
Go = {z € Glw(z,y) =w(y,z) for all y € G}.

It is well known that the number of irreducible w-representations of G is |Gg| and
all irreducible w-representations of G share a common dimension d = /|G|/|Gol,
see [11,22].
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Cocycle formulas on finite abelian groups with applications 1961

In the following we derive the formula of |Gg|, hence of d as well, in terms of the
data (ars)i1<r<s<i Of the given 2-cocycle w. Consider the following antisymmetric
[ x l-matrix

0 b12 .o by
—b12 0 - bgl
B = ) ) .
—by; —boy ... 0
where b;; = m;/m;a;j. Assume that the invariant factors of B are A1, ..., Ay with

Al Az] - (A

PROPOSITION 4.3. Keep the above notations. Then we have

- G e
my/(my, A1) -/ (my, M)’ (my, A1) (my, Ag)

Proof. By direct computations, we have

Gol = #{(i1,...,i)|0 <ip<m, for 1<r<t, [[ ¢uoiir= [ ¢uome

1<r<s<l 1<r<s<l
for any (j1,...,74;) where 0 < j. <m, for 1 <r <}
1

:ml/ml~--ml/m171#{(i1""’il)|0SZ’T<mlforlgrél’(il il)
J1

x B =0 modmy
Ji

for any (j1,...,7:1) where 0 < j, < my for 1 <r <1}
1
= i1,...,1)|0 <id, <my for 1 <r <1, A\iy
my/my - 'ml/ml—l#{( ' 24 :
=0 mod m; for 1 <r <k}
1
= my, A1) - (my, Ag)m
mz/m1~-~mz/ml_1( b (s M)
G|
my/(my, Av) -/ (ma, )

‘G my
d=y| - . O
|G0 \/ ml)Al ml)Ak)

We recover a result of Turaev [25] in the following

and
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COROLLARY 4.4. Keep the previous assumptions and notations. We have
G| .

ma/(mg, Av) -/ (me, Ar)

1 2
Qg gy det A (7‘1 r2>
ZM (TQ) = E I | Cmrl

A 1<r<ra<l

Z1(1%) = |Gol =

Proof. If [ > 2, then

Q2]

(0411 . a1l>B

- ! (€3]
= G e 2

Ogaij <my
«11 ... O]
= < s -
where A (Oézl a21> and 0 < a5 < my
By assumption, there exist two invertible integral matrices P, @ € GL;(Z) such
that
A1
B=P Ak Q.
0
0

Note that the images of P and @ in M;(Z,,,) are also invertible. Hence

21
(a11 Ce Oéll) B
(€57}
> G
Ogozij <my
A
A\ Q21
k
(0[11 . Oéll) 0

Q2

S G !

0< a5 <my
mlfl mlf mlfl mlf
_ l—k) E E Clxu)\lazl § § Oélr/\ Q2
a11=0a21=0 a1, =0 az,=0
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Cocycle formulas on finite abelian groups with applications 1963
It is well known that if £™ =1, then
7nz_1€id _ m, if gd = 17
: 0, if&d+#£1.
=0
Thus we have

1 1 B
W2y = — 20-k)
Ze) G| (ml/m1)2~~-(ml/m1_1)2ml my (my, A1) -« (ma, Ar)

_ Gl
ma/(ma, M) -/ (ma, Ax)|
If I = 1, Z}(T?) = |G| = |Gy|. The conclusion also holds. O
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